26 research outputs found

    Restoring the Final Frontier: Exosomal MicroRNA and Cutaneous Wound Repair

    Get PDF
    oai:openjournals.ljmu.ac.uk:article/601Non-healing wounds present a major healthcare challenge associated with the ageing population, the rising incidence of diabetes and the obesity epidermic. Driven by the need to expand therapeutic options for the treatment of such wounds, a large body of evidence has emerged in recent years demonstrating that microRNAs (miRNAs) modulate various aspects of cutaneous wound healing through effects on diverse cell types, including keratinocytes, fibroblasts, endothelial cells and macrophages. However, clear translational pathways for non-invasive cutaneous delivery of miRNAs to facilitate wound repair have not yet been established. The recognition that miRNAs can be actively partitioned into extracellular vesicles (EVs)—exosomes, microvesicles and apoptotic bodies—has stimulated research into the regulation, function and translational exploitation of EV-derived miRNAs both as a novel mode of intercellular signalling and as a tool for miRNA transfer to cells for therapeutic purposes. In particular, because mesenchymal stem cells (MSCs) were found to support wound healing, there is much interest in the therapeutic potential of EVs, especially exosomes, derived from these cells. In this review, we survey some of the main mesenchymal stem cells (MSCs) for which exosomal miRNAs have been evaluated in the context of skin repair, including exosomes from adipose-derived MSCs, bone MSCs, amniotic MSCs and umbilical cord MSCs. Epithelial stem cell (EPSC)-derived exosomes are also considered, from keratinocytes and epidermal stem cells. The picture that emerges from studies on exosomes from various cell types reveal they share a limited set of exosomal miRNAs enhancing wound repair. We suggest a need for direct comparison of exosomal miRNA profiles from a range of MSCs and EPSCs. The ability of exogenous exosomal miRNAs to promote healing of chronic diabetic wounds also warrants further attention in order to more fully establish their therapeutic potential

    Biological and Clinical Relevance of microRNAs in Mitochondrial Diseases

    Get PDF
    Mitochondrial dysfunction arises from an inadequate number of mitochondria, an inability to provide necessary substrates to mitochondria, or a dysfunction in their electron transport and a denosine triphosphate synthesis machinery. Occurrences of mitochondrial dysfunction are due to genetic or environmental changes in the mitochondria or in the nuclear DNA that codes mitochondrial components. Currently, drug options are available, yet no treatment exists in sight of this disease and needs a new insight into molecular and signaling pathways for this disease. microRNAs (miRNAs) are small, endogenous, and noncoding RNAs function as a master regulator of gene expression. The evolution of miRNAs in the past two decades emerged as a key regulator of gene expression that controls physiological pathological cellular differentiation processes, and metabolic homeostasis such as development and cancer. It has been known that miRNAs are a potential biomarker in both communicable and noncommunicable diseases. But, in the case of mitochondrial dysfunction in miRNAs, the number of studies and investigations are comparatively less than those on other diseases and dysfunctions. In this review, we have elaborated the roles of miRNAs in the mitochondrial diseases and dysfunctions

    Agonist-induced calcium entry correlates with STIM1 translocation

    Get PDF
    The mechanisms of agonist-induced calcium entry (ACE) following depletion of intracellular calcium stores have not been fully established. We report here that calcium-independent phospholipase A (iPLA2) is required for robust Ca2+ entry in HaCaT keratinocytes following ATP or UTP stimulation. Lysophosphatidic acid (LPA), an unrelated agonist, evoked Ca2+ release without inducing robust Ca2+ entry. Both LPA and UTP induced the redistribution of STIM1 into puncta which localized to regions near or at the plasma membrane, as well as within the cytoplasm. Plasma membrane-associated STIM1 remained high for up to 10 min after UTP stimulation, whereas it had returned almost to baseline by that time point in LPA-stimulated cells. This correlated with faster reloading of the endoplasmic reticulum Ca2+ stores in LPA treated cells. Thus by differentially regulating store-refilling after agonist-mediated depletion, LPA and UTP may exert distinct effects on the duration of STIM1 localization at the plasma membrane, and thus, on the magnitude and duration of ACE

    Keratinocyte Secretion of Cyclophilin B via the Constitutive Pathway Is Regulated through Its Cyclosporin-Binding Site

    Get PDF
    Cyclophilin B (CypB) is an endoplasmic reticulum (ER)-resident member of the cyclophilin family of proteins that bind cyclosporin A (CsA). We report that as in other cell types, CypB trafficked from the ER and was secreted by keratinocytes into the media in response to CsA. Concentrations as low as 1 p of CsA induced secretion of CypB. Using brefeldin A, we showed that CypB is secreted from keratinocytes via the constitutive secretory pathway. We defined that substitution of tryptophan residue 128 in the CsA-binding site of CypB with alanine resulted in dissociation of CypBW128A-green fluorescent protein (GFP) from the ER. Photobleaching studies revealed a significant reduction in the diffusible mobility of CypBW128A-GFP compared with CypBWT-GFP, consistent with redistribution of CypBW128A-GFP into secretory vesicles disconnected from the ER/Golgi network. Furthermore, CsA significantly decreased the mobility of CypBWT-GFP but not CypBW128A-GFP. These studies demonstrate that therapeutically relevant concentrations of CsA regulate secretion of CypB by keratinocytes, and that a key residue within the CsA-binding site of CypB controls retention of CypB within the ER and regulates entry into the secretory pathway. As keratinocytes express CypB receptors (CD147) and CypB exhibits chemotactic properties, these data have implications for the therapeutic effects of CsA in inflammatory skin disease

    Pulmonary delivery of Nanocomposite Microparticles (NCMPs) incorporating miR-146a for treatment of COPD.

    Get PDF
    The treatment and management of COPD by inhalation to the lungs has emerged as an attractive alternative route to oral dosing due to higher concentrations of the drug being administered to site of action. In this study, Nanocomposite Microparticles (NCMPs) of microRNA (miR-146a) containing PGA-co-PDL nanoparticles (NPs) for dry powder inhalation were formulated using l-leucine and mannitol. The spray-drying (Buchi B290) process was optimised and used to incorporate NPs into NCMPs using mix of l-leucine and mannitol excipients in different ratios (F1; 100:0% w/w, F2; 75:25% w/w, F3; 50:50% w/w, F4; 25:75% w/w, F5; 0:100% w/w) to investigate yield %, moisture content, aerosolisation performance and miR-146a biological activity. The optimum condition was performed at feed rate 0.5 ml/min, aspirator rate 28 m3/h, atomizing air flow rate 480 L/h, and inlet drying temperature 70 °C which produced highest yield percentage and closest recovered NPs size to original prior spray-drying. The optimum formulation (F4) had a high yield (86.0 ± 15.01%), recovered NPs size after spray-drying 409.7 ± 10.05 nm (initial NPs size 244.8 ± 4.40 nm) and low moisture content (2.02 ± 0.03%). The aerosolisation performance showed high Fine Particle Fraction (FPF) 51.33 ± 2.9%, Emitted Dose (ED) of 81.81 ± 3.0%, and the mass median aerodynamic diameter (MMAD) was ≀5 ”m suggesting a deposition in the respirable region of the lungs. The biological activity of miR-146a was preserved after spray-drying process and miR-146a loaded NCMPs produced target genes IRAK1 and TRAF6 silencing. These results indicate the optimal process parameters for the preparation of NCMPs of miR-146a-containing PGA-co-PDL NPs suitable for inhalation in the treatment and management of COPD

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore